MATH 458, Fall 2019 (39679R, Lecture, 39680R 39681R-Discussion) ## **Numerical Methods** #### Instructors Lecture: Dr. Chunming Wang Teaching TA: TBA Office: KAP 244C Office: Phone: (213) 740-6097 Phone: e-Mail: cwang@usc.edu e-Mail: Office Hours: MW 4:30PM-6PM Office Hours: # **Course Description** MATH458 is an introductory course for numerical analysis and scientific computing. On the theoretical side, this course provides an overview of numerical techniques for solving many important mathematical problems including solution of system of linear equations, solution of nonlinear equations, polynomial and spline interpolation, numerical integration, numerical methods for ordinary partial differential equations and numerical optimization problems. On the computational side, we use software such as Matlab to introduce the basic steps of implementing and validating algorithms for solving numerical mathematics problems. For most of graduate students in science and engineering disciplines, this class also offers a comprehensive review of mathematics for solving engineering and scientific problems. ### **Textbook and Reference** Uri M. Ascher, Chen Grief, A First Course in Numerical Methods, SIAM Computational Science & Engineering, 2011 Timothy Sauer, Numerical Analysis, Pearson, Addison Wesley, 2006. Germund Dahlquist and Ake Bjorck, Numerical Methods in Scientific Computing, SIAM, 2008 ## **Grading Policy** Homework: 15%, Project: 10%, Quiz: 20%, Midterm Exam: 25%, Final Exam: 30%. Final Exam: Wednesday, December 11, 11 a.m.-1 p.m. | Monday, August 26 | Wednesday, August 28 | Friday, August 30 | |--|---|--| | Introduction to Algorithm | Introduction to Algorithm | Round-off Error | | Monday, September 2
Labor Day | Wednesday, September 4 Linear Systems, Direct Methods | Friday, September 6 Linear Systems, Direct Methods | | Monday, September 9 Linear Systems, Direct Methods | Wednesday, September 11
Least Square Problems | Friday, September 13 Least Square Problems | | Monday, September 16
Least Square Problems | Wednesday, September 18
Least Square Problems | Friday, September 20
Eigenvalues | | Monday, September 23
Eigenvalues | Wednesday, September 25
Iterative Methods | Friday, September 27
Iterative Methods | | Monday, September 30
Iterative Methods | Wednesday, October 2 Computation of Eigenvalues | Friday, September 4 Computation of Eigenvalues | | Monday, October 7 Computation of Eigenvalues | Wednesday, October 9
Nonlinear Systems | Friday, October 11
Nonlinear Systems | | Monday, October 14
Nonlinear Systems | Wednesday, October 16
Midterm Exam | Friday, October 18 Fall Recess | | Monday, October 21
Nonlinear Systems | Wednesday, October 23
Nonlinear Systems | Friday, October 25
Nonlinear Systems | | Monday, October 28
Numerical Differentiation | Wednesday, October 30
Numerical Differentiation | Friday, November 1 Polynomial Interpolations | | Monday, November 4 Polynomial Interpolations | Wednesday, November 6 Polynomial Interpolations | Friday, November 8 Polynomial Splines | | Monday, November 11
Polynomial Splines | Wednesday, November 13
Polynomial Splines | Friday, November 15 Best Approximation | | Monday, November 18 Best Approximation | Wednesday, November 20
Numerical Integration | Friday, November 22
Numerical Integration | | Monday, November 25
Numerical Integration | Wednesday, November 27
Thanksgiving | Friday, November 30 Thanksgiving | | Monday, December 2 Differential Equations | Wednesday, December 4 Differential Equations | Friday, December 6 Differential Equations | This is a tentative schedule. The contents of lectures may change significantly.